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Abstract 

This paper proposes a systemic perspective for some aspects of both phylogenesis and 
ontogenesis by expressing biological organization in terms of “anti-entropy”, a notion to be 
defined below and which conceptually differs from the common use of “negative entropy”. 
To this purpose, we introduce two principles, in addition to the thermodynamic ones, which 
are (mathematically) compatible with traditional principles but which have no meaning with 
regard to inert matter. A traditional balance equation for the metabolism will then be 
extended to the new notion as specified by these principles. We examine far from 
equilibrium systems and we focus in particular on the production of global entropy 
associated to the irreversible character of the processes. A close analysis of anti-entropy will 
be performed from the perspective of a diffusion equation of biomass over “complexity” and, 
as a complementary approach and as a tool for specifying a source term, in connection to 
Schrödinger’s method regarding his equation in the field of Quantum Mechanics. We borrow 
only the operatorial approach from this equation and do so using a classical framework, since 
we use real coefficients instead of complex ones, thus outside of the mathematical framework 
of quantum theories. The first application of our proposal is a simple mathematical 
reconstruction of Gould’s complexity curve of biomass over complexity as it applies to 
evolution. We then present, based on the existence of different time scales, a partition of 
ontogenetic time, in reference to entropy and anti-entropy variation. On the grounds of this 
approach, we analyze the metabolism and scaling laws. This allows to compare various 
relevant coefficients appearing in these scaling laws, which fit empirical data. Finally, a 
tentative and quantitative evaluation of complexity is proposed, also in relation to some 
empirical data (caenorhabditis elegans). 
 

 
1. Introduction 

The issue of biological organization, of its emergence, its evolution and of its sustainability 
has been approached from widely varying perspectives: molecular biology, genetics, open 
dynamical systems far from equilibrium, etc. One of the aspects which remain the most 
controversial is the thermodynamic one: biological organization, beyond the molecular level, 
will be interpreted here in terms of “anti-entropy”, a concept which is not proper to (thermo-
)dynamics, where entropy is defined, statistically speaking, using a distribution of 
probabilities and, macroscopically speaking, according to the direction of heat exchanges. 
Note that the notion of “negative entropy” is the object of debates between several authors 
among whom we find Schrödinger, Pauling, Brillouin, Atlan, Nicolis and Prigogine. We will 
basically depart from this type of discussion, by attempting to introduce a different 

                                                   
1 In Journal Biological Systems, Vol. 17, No. 1, pp. 63-96, 2009 (revised: new images). 
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perspective partly inspired by Quantum Mechanics (but not reduced to its terms, see §. 4 and 
8), and a method of approach that are, in our view, closer to the phenomenology of life and its 
proper observables. 

1.1 Schrödinger and negative entropy as organization 

We will use as starting point Schrödinger’s informal and original remarks concerning entropy 
[Schrödinger, 1944]. Schrödinger’s short text is often quoted for its first part, which was quite 
innovative at the time but is now obsolete. In that part of the text, he proposed to apply the 
notion of “code-script”, even that of program, to chromosomes. Such computational views of 
the genome have now been made obsolete by many analyses: a synthesis of recent overviews 
and critiques may be found namely in [Fox Keller, 2003] and many others (see also [Longo, 
Tendero, 2007] for a discussion and references). It must be noted, however, that the notion of 
program was new at the time, just as was cryptography, the theory of “coding”. Moreover, a 
Laplacian deterministic viewpoint dominated the period’s genomics, and continued to do so 
for a long time, yet, it had never been explained with such clarity as it had been with 
Schrödinger. This great physicist, had at least understood the consequences of this application 
of the discrete symbolism of formal calculus to nature: “It is these chromosomes that contain 
in some kind of code-script the entire pattern of the individual’s future development and of its 
functioning in the mature state. Every complete set of chromosomes contains the full code. In 
calling the structure of the chromosome fibers a code-script we mean that the all-penetrating 
mind, once conceived by Laplace… could tell from their structure whether the egg would 
develop, under suitable conditions, into a black cock or into a speckled hen… They are the 
law-code and executive power… they are architect’s plan and builder’s craft in one” (pp 22-
23).  

Since the success of the genome project and the decoding of the DNA of several animal 
species, we have at last arrived to the position of Laplace’s God but, unfortunately (?), 
without the associated predictive power; the least we can say is that we lack the “compiler” 
and the operating system, even the knowledge of the “executive power”. Or maybe is it a case 
of insufficient knowledge of the global structure within which this discrete sequence operates, 
a sequence apparently so symbolic and computational, yet embedded in the very complex 
organization, the cell or even the organism, (re-)acting on it? 

This brings us back to chapter IV of Schrödinger’s book where he will “… try to sketch 
the bearing of the entropy principle on the large-scale behavior of a living organism - 
forgetting at the moment all that is known about chromosomes, inheritance, and so on…”   
From this premise, Schrödinger develops considerations that are as preliminary as audacious 
and that are based on a view of the organism as a whole. His idea is that what counts for a 
living organism is its organization and that the problem which poses itself is not only its 
establishment (the formation of “order based on disorder”), but also its maintenance (“order 
based on order”). He emphasizes the importance, still unclear today, of the acquisition of 
organization as negative entropy, including by means of food. This acquisition will participate 
to the ongoing tension between the increase of entropy, specific to any irreversible 
thermodynamic process and generating disorder, and the maintenance of order.  
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It is both the formation and the maintenance of order, its continuous regeneration, that 
interest us and that we propose to frame ‘in abstracto’ by means of a mathematical concept of 
anti-entropy, as “organization” or “biological complexity”, specified by two new theoretical 
principles and used in a balance equation. Anti-entropy differs from what is usually meant by 
negative entropy in view of its characterization by proper formal principles, which extend (but 
are compatible with) the thermodynamic ones. This will be done independently of any causal 
analysis which would quite probably require unification with molecular approaches; but if we 
do not have (at least) two theories, with their own conceptual autonomy, there is nothing to 
unify. 

Notions of negative entropy have been introduced on several occasions, both in physics 
and in biology. In general, they have been understood as a decrease of entropy, compensating 
the entropy increase, either within thermodynamic approaches or in reference to information 
theory and Shannon’s entropy principle. In a final section, sect. 8, we will discuss the 
relations of our approach to existing ones. 

Following Schrödinger’s focus on the “large-scale behavior of a living organism”, we 
propose a global view point, by an important change of observables and of parameters with 
respect to current physical theories. To briefly mention one of these changes, maybe our main 
contribution, we will examine the relationship between the evolution of the biomass and that 
of organization or complexity of organisms, as anti-entropy, by taking into account both the 
phylogenetic and the ontogenetic levels (we will see that this relationship corresponds to an 
analysis in terms of diffusion, but within a phase space which is uncommon for physics). This 
requires a (perhaps arbitrary, yet) rather precise quantification of phenotypic (or epistemic) 
complexity for a living organism and its use in balance and diffusion equations. 
 
1.2 The theoretical autonomy of life phenomena and the methodological perspective 

As a matter of fact, as for negative entropy, Schrödinger does not propose any specific and 
mathematically formalized principle, yet he shortly suggests that it should be understood in 
terms of Gibbs free energy, an idea that we will further develop (sect. 3). He also insists on 
the necessity of investigating statistical phenomena, these already being extremely important 
in physics for understanding thermodynamic entropy. These analyses could help establish 
correlations with physical theories, among which the bio-chemistry of macromolecules. In 
particular, he believes that it would be necessary to strive towards the unification of two 
“different mechanisms, which would enable orderly processes, a statistical mechanism 
producing order based on disorder and the new method, producing order based on order”.  
And here lies, in our view, the complexity of biological phenomena: order as an organized 
unity, differentiated and interacting, which creates and maintains itself. From the seminal 
works of Prigogine and of several others on thermodynamics far from equilibrium and on 
self-organization (see [Nicolis, Prigogine, 1977], [Kauffman, 1993]) to the recent attempt in 
[Bailly, Longo, 2008]), which analyses structural stability as a coherence structure specific to 
an “extended critical situation”, many tried to grasp these aspects of the complexity of living 
organisms (see sect. 8 for more references and comparisons). Concerning the second 
organizing mechanism (‘order from order’), Schrödinger outlines the idea, which we have 
mentioned, according to which it would use the absorption of negative entropy from the 
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environment, particularly by food. We will not make any assertions concerning the relevance 
of this idea.  

We will instead take a path which, without exploring the ‘causes’ – possibly molecular – 
will attempt to postulate and develop some new principles. These, as we already mentioned, 
could help to establish a, partly mathematical, conceptual framework for the analysis of the 
role of anti-entropy in the play between order and disorder within the living organism, starting 
at the level of the cell (which is, obviously, made up of molecules, in the same way as the 
classical or relativistic falling bodies are made up of quanta, in their own field: unification is 
indeed progressing today, but it is far from being accomplished2).  

We will begin by a “principle of establishment/maintenance” of anti-entropy (sect. 2), 
which has no analogy (nor meaning, we believe) in current physical theories. We will 
consider this anti-entropy as a measurement of the organizational complexity of life 
phenomena; on such bases, we will outline a few mathematical consequences of this 
identification, which will be compared to empirical data. The relation of biological 
complexity or organization to a notion of anti-entropy, modulo a dimensional coefficient, will 
allow us to consider it as a component of a Gibbs free energy, which depends on entropy, in 
particular in a balance equation (sect. 3); we will thus decompose entropy in a positive and a 
negative part, our anti-entropy, of the same physical dimension. 

 By the addition of a new entropic principle in sect. 2, which is specific to life phenomena, 
and of its consequences on a metabolic balance equation, we will by no means change “the 
laws” of any physical theory, but “just” extend them by new principles. The limit case (the 
value 0 of the components of the “biological type”) of the equations and the inequalities 
below brings us back to classical physical frameworks, of which these formulae are, therefore, 
nothing but a mathematically compatible extension. Yet, this will deeply modify the 
conceptual space (or the phase spaces) of the considered phenomena and their evolutions. The 
focus on some observables, which happen to be unusual from the point of view of current 
physical theories, and the compatible mathematical extensions are the core methodological 
issues in our approach. 

As for the mathematics, Schrödinger’s ideas will play an even more important role in the 
application we will make of his “wave equation”. This will be used as a diffusion equation 
with real numbers coefficients, in contrast to Schrödinger’s definition over the complex field, 
and it will be applied to a mathematical investigation of the diffusion of biomass over 
complexity, following Gould’s analysis of evolution (sect. 4 and 5). Some applications of our 
approach to ontogenetic processes will be given in sect. 6 and 7. Comparisons with existing 
approaches to “negative entropy” and various analogies and differences w.r. to physics are 
presented in sect. 8. 
 

2. Organization as anti-entropy: a few principles  

From here onwards we will equally use the terms of anti-entropy S- (a negative magnitude) 
and of complexity K, opposite to S- (so K = -S-); complexity  K  will thus be a positive 
                                                   
2 Let’s note, passingly, that even the most elegant theoretical reduction, that of thermodynamics to statistical 
physics, was accomplished when thermodynamics and its principles were already quite solid. 
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magnitude, with the dimension of an entropy. We will also be led to distinguish processes of 
complexification in the course of ontogenetic development (internal to the organism and 
strongly dependent on genetic determinations) from phylogenetic processes of 
complexification (apparently much more dependent on random phenomena and external 
conditions). 

The initial situation (cell-egg in the first case, isolated bacterium in the other) will be 
characterized by a very small K (epistemic) complexity (an anti-entropy approaching 0, 
therefore, from a global standpoint, a negligible one). So we then propose as structural 
principle for life phenomena during its organization and the maintenance of its organization 
the two following inequalities: 

- K = S- ≤ 0      and     -dK/dt = dS-/dt  ≤ 0          (1) 
S- < 0  would correspond to “anti-entropy” associated to the system’s internal organization 
processes (existence and establishment of order, respectively). For purposes of comparison 
with the physical situation and in order to include life phenomena, we will write the physical 
entropy corresponding to disorder as  S+ > 0.  The relevance of this distinction will be clear 
later on, but let’s mention for now that each component is associated to time constants that are 
sufficiently different to be separated according to the time scale considered (typically, the 
frequency of metabolic cycles vs. that of cellular reproductions).  

The inequations in (1) thus express, in our view, the principles of the maintenance and 
tendency towards organization, respectively, within life phenomena, the only context, in our 
approach, where non null  K = -S-  would make sense. We will see that the canceling out to 0 
of the second equation,  dS-/dt = 0,  in presence of  S- < 0,  can only concern the accomplished 
organism resulting from ontogenesis. This is never achieved in the case of phylogenesis, 
because, in principle and on average, following Gould (see sect. 4), we consider organisms as 
becoming increasingly complex, along evolution. 

To remain closer to empirical reality, in the last part of this text we propose to consider 
the complexity K as composed of three main components which can either be of equivalent 
importance or which can, to the contrary, be clearly dominated by the one or the other 
according to the situation and we will write: 

K = αKc + βKm + γKf 
α, β, and γ  are the respective “weights” of the different types of complexity within the total 
complexity (we will have α + β + γ =1). These weights are likely to present temporal 
variations over the course of an ontogenetic development or of phylogenetic evolution. 

   Kc (“combinatorial” complexity) corresponds to the possible cellular combinatoric 
without any other consideration than the differentiations between cellular lineages as 
structuring element; indeed, inasmuch as cells from a same lineage are interchangeable, it is 
less their number which is important than the differentiations associated to the apparition of 
these lineages (although, we will see, their number does intervene). For example, we will 
consider the analysis of the embryogenesis of Caenarhobditis Elegans from this angle (see 
Appendix 2).  

    Km (“morphological” complexity) is associated to the topological forms and structures 
which arise; it can in principle be mathematically evaluated from the way in which organic 
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structures of a same level of organization present themselves and combine. We will evoke in 
particular the properties of connexity and more or less fractal structures. 

   Kf (“functional” complexity) is, for its part, associated to the relationships established 
and to the fulfilled biological functions; metabolic relations, neuronal relations, interaction 
networks. In this regard, we will examine in particular the examples from the nervous system 
on the one hand, and from metabolic networks on the other. In [Edelmann, Tononi, 2000], a 
measure of biological complexity is proposed, as differentiation of the neural system, by an 
information theoretic approach, based on Shannon’s entropy. This also gives a pure number 
and it may be seen as a component of our  Kf. 

This tripartition of  K  is more closely developped in sect. 7. It is greatly qualitative for the 
moment, but it should help to understand why an increase of K cannot be treated as a decrease 
of S+, which is physical entropy :  K is to be associated to biological organization, particularly 
to the alternation of levels of organization, and to the structuring specific to life phenomena 
(organites, cells, organs, multicellular biological organism), which is foreign to physical 
theorizations. As for the instauration of order, critical transitions, studied in physics and 
acting as starting point for our reflections on “extended criticality” in  [Bailly, Longo, 2008], 
the establishment of coherent structures (percolation, the formation of a crystal, of a 
snowflake… [Binney et al., 1992; Kauffman, 1993; Jensen, 1998]), corresponds to a decrease 
of S+, but there is nothing there to allow to speak as such of “different organization levels”, 
nor of the  Kc, Km, Kf  partition  introduced above. Once more, the point of this paper is to 
propose a distinction between the decrease of a specific part of the entropy, due, for example, 
to a pre-existing physico-chemical potential (molecular interactions, typically, that become 
actual links because of a decrease of Brownian motion – crystals, snowflakes formation…) 
and the establishment of biological organization. 

As we have already evoked earlier, it is necessary to distinguish the processes of 
ontogenesis from those of phylogenesis, which, although they may present formal similitudes, 
are not reducible to ones to the others. Recapitulation theory (ontogenesis would recapitulate 
phylogenesis) has not really been verified, even if embryos do present, at a given stage of 
their development, indubitable resemblances in their form and functioning (the morphological 
“bottleneck”). It indeed appears that the framing of random processes by strong internal 
(DNA) or external (cell, organism, ecosystem) determinations is very different in each of the 
two cases.  

 
 
3 – Metabolism and anti-entropy 

Living matter, beyond its reproductive, generative and plastic capacities, among many others, 
distinguishes itself by the existence of a metabolism which, on account of various exchanges 
with its environment and of its internal biochemical reactions, enables it to remain 
dynamically far from equilibrium and to structurally stabilize the “extended critical situation” 
which characterizes it. In this paragraph, we attempt to analyze, from a thermodynamic 
standpoint, the dynamics of this metabolism. 

Although the approach proposed here takes on a character which heavily borrows from the 
concepts of physics, a biological specificity will appear from the moment we take into 
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account the evolutive autonomy of its organization and of the resulting “order”, in the 
schematic and highly abstract form of anti-entropy.  

So let’s consider a system far from equilibrium and note as G its Gibbs free energy. In 
general, we have G = H –TS, where T is temperature, S is entropy and H = U + PV is the 
system’s enthalpy (U is the internal energy, P and V are respectively pressure and volume). 
By definition, the R metabolism, when it exists (in living organisms for instance), corresponds 
to the difference between the fluxes of generalized free energy entering and exiting through 
the surface Σ:  

R = Σ[JG(x) – JG(x+dx)] 
So we have: 

R = - Σdx(divJG) 
 (in what follows, we will forget the element of volume Σdx, which we consider to be 
unitary). 

 Besides, the conservation equation (or the balance equation) is expressed in the general 
form: 

-divJG = dG/dt + Tσ 
where G is an extended expression of  Gibbs free energy and where σ represents the speed of 
production of entropy associated to irreversible processes.  

So let’s return to our distinction which, once more, has no reason to appear in current 
physical theories, proposing to decompose3 the S entropy in the two different parts which are 
S-  and  S+.  With these notations in mind, we then obtain from  G = H –TS  (see note4): 

R = dH/dt –T(dS-/dt + dS+/dt) + Tσ 
Moreover, given the relationship between mass and energy, we have H = aM where M is the 
mass (and  a  is a coefficient which has the magnitude of a speed squared).  So R can be 
rewritten, by highlighting four contributions to the metabolism: first, the variation of mass, 
the increase of organization, as a decrease of S-, plus the tendency towards disorder resulting 
in the increase of  S+;  then, and crucially, we add the production of entropy σ (its speed) due 
to the irreversibility of the global process. We thus have: 

R = adM/dt –T(dS-/dt + dS+/dt) + Tσ                 (2) 
Equation (2) is the fundamental equation which will be the basis of the development of a 
great part of later discussions. Let’s note that the inequalities in (1) are to be read as a 
“principle” which we propose for a theoretization of life phenomena that is to be added to 
physical (thermodynamic) principles, whereas (2) is a balance equation, based upon classical 
principles of conservation, yet extended to  S-.  Note that the possibility to derive this 
equation, from the expression of  G,  is what forces us to consider biological organization,  K,  
as given in terms of anti-entropy  S-,  a notion with the same dimension as entropy. 
Before examining the consequences of this, we will focus on a particularly important term of 
equation (2), Tσ, the inevitable production of global entropy associated to the irreversible 
character of the processes. More specifically, it is the speed of production multiplied by the 
                                                   
3 This decomposition, S = S- + S+, is not relevant for purely physical phenomena, as, in theories of inert, S- = 0, 
and remains thus specific to biological ones. 
4 In a footnote to [Schrödinger, 1944], Schrödinger proposes to analyze the negative entropy of which he speaks 
of as a form of Gibbs free energy G. In view of our decomposition of  S = S- + S+, we consider G here as a 
“generalized” free energy. Of course, the metabolism R has the physical dimension of a power. 
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temperature (σ obviously has the magnitude of an entropy applied to time, so Tσ is a power). 
We will take into account the fact that, account taken of all irreversibilities, Tσ is associated 
to all processes at hand presenting such a trait, including the variation of anti-entropy, dS-/dt.  
In a spirit that is close to those found in Prigogine’s works, whose theorems we will not need 
to use however, the production of entropy, often considered as a “side effect”, in particular 
near equilibrium, becomes for us one of the main analytical tools. The idea is that in very 
complex far from equilibrium dynamics,  Tσ  in provides a “synthetic view” of the global 
dissipative process : as we said, it is a correlated to all ongoing irreversible processes and it is 
one of the few observables with this characteristic of “globality”. 

In the sequel, another relevant observable for our analysis will be the mass (global, M, the 
biomass, or the individual mass, W, the “weight”, see 6.1). Let’s then analyse  Tσ  in its 
relation to the mass. Now,  Tσ  is a power and corresponds, thus, to the product of forces by 
fluxes (of matter, of energy – chemical, for instance – etc.; a flux is proportional to a force, 
thus to a mass), and is hence proportional to a mass squared. It can therefore be written, up to 
a coefficient ζb and a term Tσ0 as: 

Tσ ≈ ζbM2 + Tσ0                               (3) 
ζb  is therefore a constant which depends only on the global nature of the living entity under 
study and it is 0 in absence of living matter. We will discuss, for example, the different issues 
of the biomass and of the mass of an organism.  Tσ0  corresponds to the limit of a purely 
physical irreversible functioning, that is, one where the living mass, as part of M, would be 
null (thus  ζb = 0). This limit sitation does not apply in biological world where such mass is at 
least equal to that of the elementary biological entity, the isolated bacterium, but it may be 
relevant for a dead organism, with a decomposing chemical structure. 

To use this equation, we will inspire ourselves again from Schrödinger but, this time, 
regarding his physical methodology and his famous equation from an operational viewpoint. 

We will focus on equations (2) and (3), because we will consider them to be specific to 
life phenomena, as they contain terms that cancel out when we pass from the description of 
life to physical phenomena. In (2), it is obviously with regard to S- and to its variation in 
relation to time; in (3) the main term belongs to our approach to life phenomena and we will 
give an important role to this equation, a sort of balance between global entropy and biomass. 
Once more, the inert would be a limit case, the null value of the observables relative to life  
(S-,  dS-/dt  and  ζb). In short, we are “just” proposing a (mathematically compatible) extension 
of current physical theories, as our approach is not incompatible with them, just not reducible. 
To our physicalist friends in biology, we recall that the quantum field is not only irreducible, 
but also incompatible with the relativistic field – and conversely, so far. 

 
 

Intermezzo: Schrödinger’s equation and operators (recall) 

One of Schrödinger’s great ideas was the introduction of the “wave function” in quantum 
mechanics. Many aspects characterize the originality of this equation, which has changed the 
course of microphysics. In our approach, we will highlight here its operational aspect that 
later played a determinant role in quantum physics. 

Schrödinger’s view, at the time of his equation, centered around the wave function as a 
description of the quantum state. He came to substitute transformation operators to measured 
quantities, specific to the mechanics of classical particles. 
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To understand, a posteriori, this very audacious passage, we consider the following wave 
function, where p is the moment and E is the energy: 

Ψ(x,t) = exp(i(px – Et)/h) 
(it is a solution of Schrödinger’s equation for an isolated quantum particle but... this does not 
matter here). 

Since p and E appear as coefficients of space x and time t, respectively, it is very easy to 
see that multiplying a spatio-temporal evolution function (this function in particular) by p or 
by E is equivalent to differentiating it with respect to x or t, that is ∂/∂x  and  ∂/∂t, respectively 
(up to a coefficient: i/h). 

Thus, to these physical quantities, p and E, can be associated differential operators: the 
derivative with respect to space and time, respectively, the two parameters of physical 
evolution. Let’s then consider the (classical) law of conservation (Hamilton’s equation: total 
energy is the sum of kinetic energy and of potential energy): 

E = KE + PE 
More specifically, E = p2/2m + V(x),  where  V(x) is the pertinent potential5. 
Now, if we associate 

p   →   -iħ∂/∂x ≡ -iħgrad  
E   →   iħ∂/∂t   

and to space  x  the multiplication by x or by its functions, such as V(x), we obtain 
Schrödinger’s equation (ħ is Plank’s h divided by 2π and ∂2/∂x2 is the usual laplacian operator 
∆) : 

iħ∂ψ/∂t = -(ħ2/2m)∂2ψ/∂x2 + V(x)ψ 
(V(x) is the potential in x, but its expression is not important for the moment, we will return to 
this). 

The operational association performed may be synthesized, very abstractly, as the 
application of Schrödinger’s operator: 

ÔSch ≡ {iħ∂/∂t = -(ħ2/2m)∂2/∂x2 + V(x) }. 
We propose to follow, mutatis mutandis, a similar approach for the very different case we 
have at hand, relatively to temporal operationality in life phenomena. Let’s also observe, 
following many others, that we can also understand Schrödinger’s equation as a diffusion 
equation: it has its “parabolic” form (a quantity diffuses, over time, proportionally to a 
variation of its gradient in space, plus, if applicable, a source or sink term). It presents 
however two traits which are essentially different from classical diffusion equations: it 
operates on the field of complex numbers and not only on the field of real numbers, and the 
“diffusion coefficient” is itself complex. Let’s note that by this approach, Schrödinger 
invented a phase space which was appropriate to the phenomenal domain which interested 
him. We will indeed take a similar approach, but basing ourselves however on diffusion laws 
and then justifying the result by a “Schrödinger-styled” method of operational 
transformations. 
 

                                                   
5 In the case of the one-dimensional harmonic oscillator, we would have: E = p2/2m + kx2/2. 
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4 – The “diffusion” of biomass with respect to complexity 

Let’s attempt here to explain our strategy, even if it means anticipating certain results and 
making a few repetitions. Empirical data, to which we will return below, seem to indicate that 
the qualitatively representative graph of the evolutions of biomass in function of complexity 
takes on a half-Gaussian form. Now, we know that there is a relationship between this form 
and random processes as well as with solutions for diffusion equations. We will therefore 
write the corresponding equation which we also expect to be interpretable in all its terms from 
the biological standpoint. Once this stage has been reached, in view of introducing an 
operational representation, in accordance with what we consider to be an essential property of 
the temporality of life phenomena, we will look for the metabolism’s relevant quantities to 
serve as foundation for such operators. To this end, we will follow a method which is similar 
to that which we have encountered to define ÔSch. Our purpose is of using them much more 
generally later on, by showing that their use may, indeed, characterize a diffusion process in 
the adequate space, based on the great generality of metabolic processes.  

Let’s now be more specific; we will first attempt to fulfill this program in the case of the 
evolution of biomass. Why give precedence to the case of biomass? Firstly, it deals with life 
phenomena as a whole without us needing at this stage to take into account the whole variety 
of its manifestations;  then, and to return to the empirical bases which we mentioned earlier, it 
so happens that the works by S.J. Gould provide us, as we will see, with a starting point and 
with a very interesting work direction. We will see that the adequate spaces neither 
correspond with normal physical space, such as in classical physics, nor with the abstract 
Hilbert spaces of quantum mechanics, but are rather related to this new basic variable which 
is complexity K, associated to organization. We may call this complexity phenotypic or, more 
generally, epistemic, in contrapposition to the “objective” complexity of physico-chemical 
processses (see [Bailly, Longo, 2003] for more on this distinction).  

The analytical results will then enable us to return to a “diffusional” character for the basic 
equation in this new space which is specific to life phenomena. In order to establish these 
results, we will take inspiration from the aforementioned approach and from works by S.J. 
Gould, such as presented in [Gould, 1991]. In particular, it will be an issue of modeling two of 
the main aspects of such work: on the one hand, the idea of random processes of evolution in 
function of the complexity of life phenomena – and of the quasi-Gaussian aspect taken by the 
occurrence graph of biomass in function of this complexity (figures 1 and 1’) – and on the 
other hand, that of the existence of what Gould calls a “left wall” which imposes itself upon 
these processes. This left wall expresses the impossibility of characterizing life phenomena 
below the elementary level of the bacterium. Random evolution then only takes place 
“towards the right”, meaning in the direction of a higher epistemic complexity than that of the 
bacterium: in fact,  

any random walk, bounded on one side, statistically progresses (“diffuses”) in the 
direction opposite to the wall. 

In other words, the global structure of diffusion is the average result of the local interactions, 
which transitively “inherit” the orientation due to the original symmetry breaking. In our case, 
where this breaking corresponds to the formation of the first bacteria, there can then be local 
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inversions of complexity, but, on average, it can only increase6. We are thus applying a 
general mathematical principle, largely applied in physics, over a non physical phase space. 

 
FIGURES 1 AND 1’ ([Gould, 1991the “frequency of occurrences” corresponds to our 

“biomass”): 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
Gould’s drawing is based on a remarkable idea: the space of observable and parameters is 

given by the biomass and the “complexity”. More precisely, it hints on how the biomass 
“diffuse over complexity, a rather original phase-space. Yet, it is a confusing hint because of 
its unclear reference to time. “Present” should be the instantaneous picture of the current 
situation: what are the dinosaurs doing there? An advantage of our mathematical approach 
will be to provide a consistent treatment of time as well (see figure 1b). 

The idea is to define operators derived from equation (3) according to a real-numbers 
variant of Schrödinger’s operatorial approach (over real numbers, in our case). 
 
4.1 Dynamics and modeling  
 
To propose an equation which interpolates, on the basis of general principles, paleontological 
data, we will use, as observables and reference parameters, the epistemic “density” of the 
biomass m, physical time t and relative epistemic complexity K: here lies our change of 
reference space where we will express m in function of t and of K. The isolated bacterium 
then corresponds to the origin (K ≈ 0) and the existence of the left wall always imposes K > 0, 
which is consistent with our principle (1). The studied state function will therefore be chosen 
                                                   
6 To put it into biological terms, “the spreading of the curve can only be explained by the existence of the left 
wall and by the multiplication of species; the right part of the distribution is a consequence and not a cause of 
this spreading”…  “the notorious progression of life throughout history is therefore a random movement 
introducing distance between organisms and their tiny ancestors, and not a unidirectional impulse towards a 
fundamentally advantageous complexity” [Gould, 1991]. Of course, we are only thinking here of biological 
evolution, while neglecting the last few thousands of years, the short history of humanity’s invasion of the 
planet. 
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as the “density” of the biomass relatively to K and will be written m(t, K) of which the 
integral over all accessible K’s will give the temporal evolution of the overall biomass M(t). 
Time, of course, is an orthogonal dimension relatively to the plane of the figures above: its 
increase induces a deformation of the curve on this plane, just as in the passage, described by 
Gould, between the Precambrian time and today.  

The dynamics involved and the aspect of the effects which it provokes (Gould’s 
qualitative curve) lead us to propose to determine  m(t, K),  as a first attempt, by a diffusive 
equation with a source (a second approach to equation (4) below, inspired by Schrödinger’s 
operator, will further justify and specify it). Indeed, one must take into account an 
irreversibility with regard to time, an expression stemming from a “random walk” as well as 
the fact that, by means of growth and genesis, the biomass tends to increase with time. The 
corresponding “diffusion” equation (which may be interpreted as a balance equation) will thus 
be written as:  

                                       ∂m/∂t = D∂2m/∂K2 + Q(t,K)                                        (4) 
D represents the “diffusion coefficient”, associated to the random evolution process of this 
biomass density in terms of epistemic complexity K, and Q is the biomass’s source term. The 
total biomass M(t) at time t will therefore be the integral in dK of m(t, K).   

But… how may we justify this equation more specifically and give an expression to 
Q(t,K)? A Schrödinger type operational approach will enable us to derive this diffusion 
equation from general considerations made regarding the issue of the production of entropy in 
metabolic processes and will also enable to propose an expression for the Q(t,K) function.  

So let’s return to the metabolism equation (2). As we have already recalled, equation (2) 
in our far from equilibrium frameworks has enabled us to introduce the speed of entropy 
production σ, which we have then correlated, by means of equation (3), to the system’s 
energy variation. The latter, let’s recall, being proportional to the mass squared, takes the 
following form in the case of biomass, where M is now the total biomass (as we were saying, 
Tσ  is a power and the coefficients must, of course, take it into account) : 

                                                         Tσ = ζbM2 + Tσ0 
By analogy with what is done in quantum physics regarding energy, that is the association 

E  →  iħ∂/∂t,  it then does not seem artificial to put into relationship the speed of the 
production of entropy, which is related to the irreversible character of all processes, with the 
variation in relationship to time, which is also unidirectional, by means of the partial 
derivation operator ∂/∂t. Once more, the analysis of the speed of entropy production, far from 
equilibrium, plays a very important role, from our point of view, one which is quite similar to 
that of the variations of energy close to equilibrium (see Sect. 3). 

So let’s set the correspondence - in the manner of Schrödinger, if we may allow ourselves 
such an abuse of language and… of dimension:  

Tσ → ρb ∂/∂t ,   
where  ρb  is a dimensional coefficient (see appendix 1 for the dimensional analysis). Similarly 
as for ζb, also ρb is different from 0 only in presence of biological activity. 

In the same order of ideas, now in analogy to  (p → -iħ∂/∂x)  in quantum physics, let’s 
then correlate the growing biomass with what may be considered to be its dual or its 
necessary complement, that is the organization of which it is the locus. Thus, we propose, for 
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K epistemic complexity, and by means of the ∂/∂K differential operator, the following 
association: 

M → ∂/∂K   (see Appendix 1) 
Of course, our parameters and observables as well as the constants (see below) have 

totally changed: entropy variation, multiplied by temperature, Tσ, instead of physical energy; 
mass M instead of momentum (which is proportional to a mass, though) and, most of all, 
complexity K instead of space. From the formal point of view, and with regard to the physical 
Hamiltonian,  Tσ  then plays the role of energy (it is actually a power) and M plays the role of 
momentum p (M squared indeed intervenes in Tσ, just as p does in E).  Likewise, for 
Schrödinger, p is associated to the space x, as explained in the Intermezzo, under the form of 
∂/∂x, also in relationship to the duality, characteristic of quantum physics, which correlates 
momentum and position. In our approach, mass is associated to complexity, as the structural 
organization within which it develops, under the form of ∂/∂K.  As we will see below, this 
component disappears in the equation, exactly when there is only a growth of mass, without 
any change of organization – in the case of the free proliferation of bacteria, for instance. 

In accordance with Schrödinger’s approach then, the source term Q(t,K) may be 
considered as a “potential” and in our case expresses itself, up to a dimensional constant, by 
the simple multiplication by Tσ0, the source term, which is constant in relation to t and K.  
This gives us for Q(t,K) a linear expression in m, which we will write as αbm.. Intuitively, Q, 
representing a source term, must be compatible with the tendency towards free proliferation 
(reproduction) of organisms, which is roughly proportional to the number of existing 
organisms, therefore, to m (that is, linear in m, see also the following note). 

By concluding with the introduction of the “diffusion coefficient”, Db, in epistemic 
complexity, and by posing αb = Tσ0/ρb for the source term, we get an operator which takes the 
form of : 
                                                    Ô ≡ { ∂/∂t = Db∂2/∂K2 + αb }                                    
By using as state function, or “biological evolution function”, the density  m(t,K)  over  K,  
this operator corresponds to the equation: 

                                              ∂m/∂t = Db∂2m/∂K2 + αbm                                  (5) 
Of course, αb  makes sense (is non zero) only in presence of non null biological activities (ρb ≠ 
0). In the case of the inert, one also has  m(t,K) = 0.  Observe finally that, w.r. to 
Schrödinger’s operator, a crucial difference is given by the coefficients. These happen to be 
real numbers, not complex ones, as the latter contribute to produce the typical effects of 
Quantum Mechanics (superposition, among others). 

To summarize, in the case of biomass, it was thus possible to associate operators to the 
relevant magnitudes and to thus obtain a dynamic equation. The recourse to Schrödinger’s 
approach on the one hand justifies, by means of a different method, the same equation 
obtained as a diffusion, (4); on the other hand, it has enabled us to give an expression to 
Q(t,K), the source function of the dynamics. One of our concerns will now be to examine if, 
how, and with which results this approach may be applied and generalized to the other cases 
considered. 
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5. Phylogenetic aspect 
   

We have thus proposed, for the density m of biomass, the evolution equation (5) on the 
epistemic complexity K, or, more explicitly: 

                                              ∂m/∂t = D∂2m/∂K2 + am(t,K)   (5) 
Let’s recall that D represents the “diffusion coefficient” associated to the random evolution 
process of this biomass density over the epistemic complexity and that am(t,K) is the source 
term of the biomass (D will then have the magnitude of a squared complexity divided by a 
time value; am(t,K) is that of the mass density divided by a time value, so  a  is the reciprocal 
value of a time value). As intuitively considered above, this would amount to supposing that 
the proliferation speed (∂m/∂t) is proportional to the mass7. So a solution8 to (5) would be 
written as (A is still a dimensional constant, a mass density multiplied by the square root of a 
time value): 

m(t,K) = (A/√t) exp(at)exp(-K2/4Dt)          (6) 
To a constant biomass density m = mc, we can thus solve in K to get K(mc,t), that is : 

K2│mc = 4aDt2 – 2DtLogt + 4Dt(LogA – Logmc)     (7) 
and for high values for time, the epistemic complexity would increase linearly in function 

of such time: 
K(t→∞) ~ 2t√(aD)         (8) 

So, for a given biomass density, the epistemic complexity would not stop to increase (and 
anti-entropy would not stop to decrease:  dS-/dt    ).  We could comment this by 
saying that evolutive processes tend towards a regular increase of the epistemic complexity of 
a given biomass.  

It should be clear that our approach mathematically justifies Gould’s approach, gives a 
source term and a consistent dependence on time, including the exponential free proliferation 
of bacteria in early times of life: 
 
FIGURE 1b (courtesy of Maël Montevil): 
 
 
 
 
 
 
 
 
 
 
 

 

 

                                                   
7 This hypothesis, to reiterate once again, is perfectly compatible with the analysis of the processes of free 
proliferation undergone by living matter. That is, with no constraints and without regard to complexity and its 
variations (so, for D = 0), it leads to an exponential increase in time (for example, in the case of the free 
reproduction of bacteria). 
8 Other solutions exist, but they do not answer to the constraints that are a priori implicit for the object we are 
examining here. 
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Let’s recall in this respect that the “left wall” proposed by Gould for the evolution of the 
biomass with regard to complexity involves an asymmetry in the whole evolutive process, 
which is given by the form, asymptomatically exponential in t and Gaussian in K, of our 
m(t,K) function. As a mater of fact, for purely mathematical reasons, a random walk with a 
boundary produces an oriented diffusion. In our case, this introduces a bias in the variation 
that is available to selection. So, we obtain an increase, on average, in complexity and in mass 
with the progression of time as well as a (half) bell curve, in what concerns the ratio between 
the two. This seems to correspond well enough to the empirical evidence and it is contrast to 
the working hypothesis of the modern synthesis in theory of evolution. According to this 
hypothesis, the supply of variation, as purely and locally random, is not biased. That is, it was 
supposed that the variation in a trait is disributed uniformely, in all directions, and without 
bias around the current mean. As a matter of fact, a simple analysis of the “phylogenetic drift” 
in terms of random mutations, without principles such as those which we postulate, does not 
enable to deduce the asymmetry stressed here, following Gould. In fact, the random mutations 
could induce, at each moment of the evolution and on average, as great an increase as a 
decrease in epistemic complexity as well as an initially uniform distribution of complexity in 
relation to mass. Darwinian selection of the incompatible alone would not suffice to explain 
the overall increase of complexity, because “simpler” may also be compatible with the 
ecosystem (bacteria are still happily there), nor to explain the empirically observed 
distribution of biomass over complexity. On the other hand, the mathematical justification of 
asymmetry highlighted by Gould, and that we develop here, accounts for natural 
complexification: an asymmetry at the origin in the diffusion propagates by local interactions 
in the phase space. To conclude, it appears to us that these remarks are compatible with (and 
extend) Darwinian theories. In short, the a posteriori judgment that evolution complexifies 
organisms because more complexity provides a “selective advantage”, is transformed into a 
mathematical a priori principle on the propagation of a symmetry breaking. The selection of 
incompatible organisms operates locally: typically, complexification may be produced by the 
exclusion of organisms that find all possible ecological niches already occupied (by the 
organisms “on the left” in Gould’s diagram). Thus, our approach inserts Darwinian views 
within a framework where the structure of evolution is made (more) intelligible by being 
derived from general principles, among which the (in)equalities in (1) and (2), and by very 
solid methods (diffusion and operator-based approach). In particular, they give a 
mathematical foundation to the remarks, revisited by Gould and quoted in Sect. 4, remarks 
which, for many biologists, are at the center of the modern vision of evolution. 

 
6. Ontogenetic aspect 

6.1 Three characteristic times and four metabolic regimes 
 
In the case of ontogenesis, the situation is different than that outlined for phylogenesis. Let’s 
start by noting that embryogenesis, with the setting of the various functions and a (strong) 
increase of the complexity of the organism, is completed rather quickly, with a characteristic 
time which we will call τK, to produce an organism which continues to grow without 
necessarily diversifying further on. 
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There comes a moment, where the anti-entropy (S- = -K) stops decreasing (or where the 
complexity K stops increasing) and where it stabilizes at the value at which the organization 
maintains itself (at the cost, of course, of the continuing energetic exchanges with the exterior 
and of a consumed power P for reaching the final and relatively stable mass)9. Of course, the 
setting of the organization is practically over with (end of embryogenesis) a long time before 
the final mass is attained. Let’s call W the individual mass10 and τW the characteristic time 
necessary to reach the adult’s mass (we will thus have τW >> τK). 

In what concerns entropy S+ related to aging, we will propose an exponential increase, 
with its own characteristic time: 

dS+/dt = S+/τS+        
This increase corresponds, due to the nature of the exponential, to a cumulative effect, with no 
antagonism (see 6.2.1). The characteristic time  τS+  therefore refers to aging and consequently 
τS+ >> τW  because the adult mass is reached far before biologically detectable aging begins. 

These three characteristic times (τS+ >> τW >> τK)  divide the evolution of the organism 
into the four distinct periods below, within which one or another of the relevant aspects is 
dominant (without excluding the others) : (2.1) establishment of organization (embryogenesis, 
with a τK characteristic time); (2.2) mass increase (τW) ; (2.3) adult life and, finally (2.4), 
aging (τS+).  

We can therefore distinguish reduced and different forms for the metabolism’s equation 
(2) in function of each of these periods:  
 
(2.1)  R1 ~ adW/dt - TdS- /dt +Tσ1     (the effect of  S+ remains negligible : embryogenesis) 
 
(2.2)   R2 ~ adW/dt +Tσ2   (organization K = -S- no longer changes, the mass increase 
continues and the effects of aging remain negligible : childhood/adolescence) 
 
(2.3)  R3 ~ Tσ3   (now the mass remains more or less constant and all is governed by 
exchanges with the environment which ensure structural stability: adulthood) 
 
(2.4)  R4 ~ -TdS+/dt +Tσ4  (the effect of aging starts to be felt and becomes predominant: old 
age ; it is even possible to add a negative adW/dt term, accounting for a possible loss of 
weight) 
 
Let’s summarize by observing that:  

• (2.1) above is the (dS+/dt = 0)  case of equation (2) ;  
• we go from (2.1) to (2.2), when there is no more increase of organization (dK/dt = 0); 
• from (2.2) to (2.3), when there is no more increase of mass (dw/dt = 0) ;  
• from (2.3) to (2.4), when the increase of internal entropy is no longer negligible 

possibly accompanied by a loss of weight.  
It must also be noted that the (speed of the) production of entropy σi, for i = 1,...4, remains 
present. It could be relevant to consider it as being minimal in σ3, at the adult stage – an age 
of relative “stationarity”, but that would lead us to considerations regarding the applicability 

                                                   
9 For accounting such a qualitative situation, the simplest is to propose that the evolution of K is also governed 
by some logistic equation, such as dK/dt = 1/τKK(1-K/Kf) (see paragraph 6.2.1.) 
10 We called   m  the biomass density,  M  its integral (the overall biomass) and  W  the individual mass (or 
weight).  The apparent inconsistency in names is due, in part, to the lack of more consistent letters, but also to 
the very different mathematical dynamics of these three entities. In particular, only  W  admits a notion of 
approximately “maximal” or adult mass to be associated to scaling laws; moreover, its growth is qualitatively 
given by the logistic function. None of these properties applies to the dynamics of m and M, which we 
previously described. 
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of Prigogine’s “theorem of minimum entropy production” (see [Nicolis, Prigogine, 1977]), 
which does not affect the work done here. 
 
6.1.1   Remarks on aging 
Without neglecting the genetic aspects of aging, which molecular theories often associate to 
the shortening of telomeres, we would like to emphasize the importance of this persistent 
production of entropy during all the stages of life and, particularly, during the last stages. It is 
a matter, we reiterate, of the internal entropy S+ which has a physical nature (related to 
thermodynamic processes and to the exchange of matter and of energy) as well as of the 
(speed of) entropy production σi due to all irreversible processes, including the dS+/dt 
variation of entropy and that specific to life phenomena, the variation of complexity dK/dt = -
dS-/dt.  Now, in a monocellular organism, for which there are no stages 2.3 or 2.4, given that 
maturity normally triggers mitosis, the entropy produced is released in the exterior 
environment and there is practically no reason to speak of aging. On the other hand, in a 
metazoan, the entropy produced, under all of its forms, is also but inevitably transferred to the 
environing cells, to the tissue, to the organism. In particular, during the adult stage (2.3) and 
during aging (2.4) the σ3 and, respectively, the S+, σ4  components, eminently entropic, 
dominate. The effect of the accumulation of entropy during life is that which contributes, 
mathematically, to the exponential increase of S+, with a very large τS+ (which corresponds to 
its very tardive sensible manifestation). But entropy implies, in principle, disorganization, 
including the gradual disorganization of cells, of tissues, of the organism. 

But of course, this very general analysis says nothing about how this disorganization takes 
place, nor anything about its specific “timetable”. Today, there are at least two competing 
theories regarding aging (see [Olshansky et al., 2005] for an overview): the first, more 
classical, based on the cumulative ravages of “oxidative stress”, the second, based on the loss 
of metabolic stability (essentially attributable to [Demetrius, 2004]). These specific analyses 
account, though differently, for the experimental data and for the observations which are 
sometimes contradictory. They require, from our standpoint, significant adjustments with 
regard to our characteristic times, in function of the species and of their ecosystems, but it 
seems to us that the framework of principles proposed here would be compatible a priori with 
both points of view, yet enriching both, we believe, by their embedding into a more general 
theoretical frame. 
 
 
6.2 Temporal evolution of the metabolism and scaling laws  
 
In this section, we will compare theoretical observations and empirical data, and this will lead 
us to a strong hypothesis concerning the correlation between the role of the individual mass, 
W, and the speed of entropy production,  σ,  in the evolution of the metabolism. This 
hypothesis will be strengthened by a correlation between different magnitudes (coefficients) 
corresponding to empirical observations.  
 
6.2.1 Mathematical forms of growth: complexity and mass 
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As a premise to Section 6.2.2, the main application of our approach to ontogenesis, we recall 
that, in order to describe in a mathematically simple way the increase of the individual mass 
W, in biology, we would represent it in the form of the logistic function, as commonly done: 

dW/dt = (W/τW)(1 – W/Wf) 
This is the simplest among functions describing an “ago-antagonistic” process, since Lotka 
and Volterra’s work and even more so since the seminal work in ecology by [May, 1976] (a 
linear increase which multiplies a decay, the antagonistic factor which limits increases, as in 
the diagram below, in W and t; see [Sprott, 2003] for a recent introduction and survey). This 
factor is normalized by dividing Wf, the final mass (asymptotic) reached by the adult 
organism. In the preceding notation, τW  is its characteristic time. 

Now, we may assume a maximal or final value to the complexity K of a multicellular 
organism and we formally describe also the evolution of the complexity over the course of 
ontogenesis, as an ago-antagonistic process, by the logistic function where τK is its 
characteristic time (low speed of complexification during early cell reproduction, followed by 
a faster tissue differentiation and, finally, slow stabilization): 

dK/dt = (K/τK)(1 – K/Kf) 
 

 
Figure 2. 

 
In other words, we could comment this qualitative diagram, common to dK/dt and to dW/dt,  
by reminding that, in the case of K, complexity increases over the course of embryogenesis 
because the structure complexifies and the system becomes increasingly organized. More 
specifically, after a first phase of simple cellular reproduction, we observe a great increase of 
organization.  This increase slows down, after an inflection point which we have set here at 0, 
until it then reaches a maximal level of organization, Kf, at the end of embryogenesis and of 
development, here at an approximate “time” 4. We will understand the mathematical form of 
the increase of mass in a similar way, but with a much longer characteristic time (the two 
curves only differ by the constant values τK, τW, Kf, Wf ). 
 
 
6.2.2  The metabolism and scaling laws11   
 

                                                   
11  The calculations in this section were established with the collaboration of Boris Saulnier. 
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The following analysis firstly bases itself on the existence of scaling laws in biology, that is, 
on the fact that certain magnitudes behave (give or take the coefficients) like powers of the 
adult mass of organisms and sometimes in a very interspecific way [Peters, 1983; Schmidt-
Nielsen, 1984]. First, the existence of these scaling laws may have been thrown into doubt, 
but it happened to be corroborated by a number of observations and reinforced in some ways 
by the demonstration of allometric laws [Weibel 1991; West et al. 1997; Gayon 2000; 
Andresen et al. 2002]. Secondly, it is the value of the scaling exponents, generally fractional, 
which has been the subject of controversies, but a relatively wide consensus, not only based 
on experimental observations, but also on theoretical constraints, has finally arisen regarding 
the acceptance of a set of values [Wieser 1984; Denne et al. 1987; Kurz et al. 1998; Gilloly et 
al. 2001; Andresen et al. 2002; Brown et al. 2002]. It is these values which we will use later 
on. In particular, for the issue at hand, most of the important characteristic times and 
biologically important durations (life span, gestation period) or the periods (reciprocal 
frequency values) that are associated to the biological rhythm scale as the  ¼ power of the 
adult mass, Wf.  On the basis of this, and for the characteristic times which interest us here, 
we can write, for  j = S+, W, K:  
 τj ~ ujWf

1/4   (scaling of the times as a  ¼  power of the adult mass). 
In particular, we have, for the characteristic time of growth: 
 τW  ~ uWWf

1/4 . 
As for metabolism, the analyses and the observations show that, over the course of the 
increase of mass, it grows linearly with the mass, [Peters, 1983], that is 
(R) R1  et  R2   (of equations (2.1) and (2.2) above) depend linearily on the mass W.  
On the other hand, the adult metabolism itself very generally obeys the scaling law: 
 R3 ~ vRWf

3/4 . 
We will see that the linearity of the dependence of the metabolism over the course of 

growth and this last equation are correlated: this will only be the limit case of the increase 
(when the adult mass is reached). In particular, by using R3 ~ vRWf

3/4   and (2.3), that is,  R3 ~ 
Tσ3,  we will have:    
 Tσ3 ~ vRWf

3/4 . 
We will now focus on the presumed linearity of R2, in relationship to W, by comparing it 

to the expression we get when developing equation (2) at stage (2.2), thanks to the logistic 
expression which modelizes the increase of mass:   

dW/dt = (W/τW)(1 – W/Wf) 
We then get: 

(2.2b)   R2 ~ adW/dt + Tσ2 = (a/τW)W(1 – W/Wf) + Tσ2  
Let’s firstly note that, for  W = Wf,  we go back, obviously, to the expression for R3. 

However, we have a problem here: we have just said, see (R) above, that during period (2.2) 
corresponding to the increase of mass, metabolism R2 linearly depends on the mass, whereas 
(2.2b) gives a quadratic expression for this dependency.  

This apparent contradiction isn’t one if the quadratic terms reciprocally cancel each other 
out, that is, if  

(9)   (a/τW)W2/Wf  ~ Tσ2 
From the physical point of view, equation (9) is dimensionally plausible, because the 

speed of entropy production is proportional to the mass squared (see eq. (3)). From a logical 
standpoint, the inference is correct: if the hypotheses are true and if (a/τW)W2/Wf ≠ Tσ2  leads 
to a contradiction, then (a/τW)W2/Wf = Tσ2. What appears to validate the hypotheses, in 
particular (2.2b) which stems from (2), taken together with the current observations regarding 
the linearity of  R1   and of  R2,  in relationship to mass, is that our deduction (from the 
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hypothesis) implies a relation between empirically corroborated magnitudes, as we will see in 
the following section. 

Note, now, that (9) trivially implies the following simplified form of (2.2b):   
  R2 ~ (a/τW)W.   

This expression, at the threshold value, when the adult mass W = Wf  is reached, that is, when 
R2 becomes R3, gives us, on the one hand : 

R2 = R3 ~ (a/τW)Wf = (a/uW) Wf
3/4  since  τW  ~ uWWf

1/4 . 
On the other hand, we know that R3 ~ vRWf

3/4,  therefore vRWf
3/4 ~ (a/uW) Wf

3/4,  and this 
implies 

(10)  uWvR ~ a. 
We will see, in the following section, that uWvR ~ a  is empirically corroborated at least in the 
case of the human organism where we have a sufficient amount of data, and this reinforces the 
given hypothesis.  

For the moment, let’s use the expressions R2 ~ (a/τW)W,  τW  ~ uWWf
1/4  and relation (10) 

to put R2  in the form of 
(11)   R2 ~ vR(W/Wf

1/4) 
At the adult stage, when W = Wf,  the scaling of R3  in  Wf

3/4  is widely recognized. As 
promised, in our approach, this scaling becomes a particular case (a particular regime, the 
adult threshold W = Wf) of our more general relation (11). In any event and moreover, we 
will obtain, in the considered regimes and by using (9), (10) and τW  ~ uWWf

1/4 , the expression  
Tσ2 ~ vR(W2/Wf

5/4). 
This result, at the limit of W = Wf, further reinforces our hypotheses and equality (9) which 
results from it because it gives, by another path, the expression Tσ3 ~ vRWf

3/4  obtained above. 
In fact, the crucial remark, over the course of this reasoning which is logically and 

physically plausible, is indeed that the speed of entropy production Tσ2 (quadratic in W) 
intervenes in these regimes in such a way as its contribution to the metabolism compensates 
for the “antagonistic” component specific to the mass increase, that is, -(a/τW)W2/Wf  
(equation (9) above). It appears that there is something interesting to understand here and 
which arouses open questions concerning the role of the speed of the increase of entropy, due 
to all the irreversible processes at play, in the computation of the metabolism in relation to 
mass. At the  Tσ3  limit, we were saying, and therefore for W = Wf, all is in order; meaning, 
once more, that our general equations, in limit cases, produce widely acknowledged scaling 
laws.  

 
 

6.3 Comparisons with observations and with biological data 
 
We are now at the stage of verifying that the relation (a = vRuW), which we have established 
by using theoretical hypotheses and empirical references, is compatible with the biological 
data which we may have at hand, the most complete ones seeming to be those relative to the 
human being. We will proceed in several steps. 
   Firstly, let’s give an explicit expression to the evolution of mass over the course of 
development; we know that it satisfies the logistic equation and, after integration, we get: 
 (12) W(t) = (WiWf)/[Wi + (Wf - Wi) exp(-t/τW)] 
where Wi  and  Wf  represent the initial and final masses, respectively. 

The graph of the growth curve for mass, represented in figure 2, shows an inflection point. 
We can easily calculate that it is reached at time tr  such that  W(tr) = Wf/2. 



 21 

If the maximal mass of the average adult male is around 70 kg, the usual growth curves 
show that a child reaches a mass of 35 kg around the age of 12 (= tr). Also, we evaluate the 
fertilized ovule to have a mass of  Wi ~ 1,4.10-3 mg   (an ovule has on average a diameter of 
140µm and a density of approximately 1Kg/dm3). Finally, we use the relationship between tr 
and Wf by applying it to equation (12) to get the approximate value of τW, that is, τW ~ 0.5(life 
span)12. By then using the scaling formula for τW, we finally get uW ~ 63 days/kg1/4.  

Also, it is possible to evaluate vR. Indeed, the  R3  human metabolism is of the order of 
100w (100J/sec or 2000 Kcal/day). With Wf ~ 70Kg  and knowing by the scaling law that vR 
= R3/Wf

3/4 , we /compute  vR ~ 360KJ/(day.Kg3/4). 
Now, if the sought relation (a ~ uWvR) is verified, we should get  a ~ 22.5KJ/g.  This result 

is indeed in accordance with the evaluations conducted experimentally which propose the 
interval of variation  20KJ/g < a < 26KJ/g,  see [Mitchell, Seymour, 2000; Zelter, 2004]. 

Of course, the satisfying aspect of this result does not enable in itself to prove the full 
generality of the model which we have just proposed, but gives it, besides its relatively simple 
thermodynamic clarity, a biological plausibility that is not simply abstract. Of course, it would 
be necessary to complete this sort of result by means of more numerous and general 
observations and biological experiments. This would allow to be totally convinced that this 
approach based on the role of entropy, far from equilibrium, without entering into details of 
the underlying cycles of chemical reactions. These are of course very important and may 
analytically account for the metabolic phenomena that we considered at the thermodynamic 
level for the whole organism or set of organisms.   
 
 
7. The components of complexity 
 
Let’s now return to the tripartition of the complexity K introduced in Sect. 2: 
 
                         (13)                         K = αKc + βKm + γKf     
 
Our main aim is to propose a “quantitative” approach to “epistemic complexity” of 
organisms, as we called it. This very arbitrary and sketchy attempt is only justified by that 
aim, which should turn organization as complexity into a major observable in biology, and a 
mathematizable one. Our starting point will lie in a parallelism with the classical treatment of 
the thermodynamic entropy as considered from a statistical mechanic point of view, i.e. S = 
kBLogZ, where kB is the Boltzmann constant and Z is the number of complexions (discernable 
microstates). In our case, instead of just “one kind” Z of microstates, we will consider Z as a 
global “complexion number”, made out of three components, Z=Zc

αZm
βZf

γ such that S- = -
kBLogZ,  thus  K = kBLogZ.  Thus, equation (13) may be derived by: 

K = kBLogZ = kB(LogZc
α + LogZm

β+ LogZf
γ) = αKc + βKm + γKf 

where each component is given by a logarithm, multiplied by the dimensional constant, kB, as 
we will observe and justify in the following subsections. We will further motivate this 
definition of anti-entropy in sect. 8, by more comparisons to physics. 

 
                                                   
12 Life span of humans in the wildness (all these data refer to wild animals: our agriculture and civilization 
largely changed data). 
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7.1  The combinatorial component Kc 

The distinction between anti-entropy, related to growth as such, and differentiation, related to 
morphogenesis, have a cellular equivalent. We propose to consider the processes of cellular 
division and proliferation to be associated to the first aspect, growth, and the processes of 
cellular differentiation for their part to be associated to combinatorial complexity. We then 
consider them to mainly intervene in the context of the establishment of organization under 
the aspect of Kc.  

We will first simplify the problem by adopting the following combinatorial approach: if 
N(t) represents the number of cells at time t and if we designate by n(t) the number of 
differentiated cellular lineages, lineage j (j = 1, …, n) comprising nj(t) cells (∑jnj = N), we 
define the combinatorial component of the complexity Kc, up to the dimensional constant kB, 
by the logarithm of multinomial  M(t) = N !/∏j(nj !), that is:  

 
(14)             Kc  kB[Log(N !) - ∑jLog(nj !)]            
    
Now if we posit that nj = N/qj, where each qj is a bounded integer (∑j(1/qj) = 1) and, as N 

is very large compared to 1, we may use Stirling’s approximation; (14) can then be simplified 
and, per cell, we get: 

 
(15)             Kc/N  kB∑j[Log(qj)/qj] 
    
Why are we giving this relevant role to Boltzmann constant kB?  The point is that  kB  

follows from the analysis of perfect gazes. Thus, it provides, in full generality, a possible 
“least value of information” in terms of entropy, due to the assumed “perfect” independence 
of particles (see also Brillouin’s or Shannon’s approach to information as negative entropy13). 
In any case, we use it here both as a dimensional constant and in order to fix a scale, but other 
scales are of course possible. 

In the Appendix, we illustrate this approach by studying the case of the multicellular 
organism Caenorhabditis elegans of which we precisely know the temporal development, in 
both terms of number of cells as well as of distinct lineages. 

 
7.2  The morphological component Km 
In what concerns the morphological complexity Km, we will simply refer to current 
mathematical analyses which take into account the connexities of organs as well as the 
existence of critical geometric points (maxima and minima, inflections and curvatures...) 
characterizing their forms and topologies. For example, and very provisionally, we could 
evaluate Km as follows: 

Km = kB [Log(1+n1) + Logn2 + Logn3 +Logn4] 
where n1 represents the number of changes in the sign of the local curvature (for example in 
the case of complicated geometrical shapes14), n2, the number of singular situations (corners, 
bifurcations, etc), n3, the number of non connate parts of a same organ (for example, the 
number of separate muscles or bones taking into account the number of different such organs) 
and n4, the number of group links (wreath) in the sense of [Leyton, 2004] which enable to 

                                                   
13 More precisely, Brillouin’s evaluation of this least value is kBLn2 (one needs at least 2 discernable 
microstates). 
14 Of course in the case of “fractal” structures (which are actually fractals only at the infinite limit), we have to 
take into account only the final result at the relevant limiting scale (number of bifurcations for trees - like the 
bronchial tree, for instance - size of minimal elements for interfaces - like the alveolar terminal structure of the 
lung for instance -). 
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define, for biology, at least closely, the geometric construction of forms (for instance, for the 
digestive system - very roughly – the group of the sphere (for stomach) and that of the curved 
cylinder - for oesophage and intestine). This does not mean, of course, that biology is itself 
constructed according to these procedures, but that the results of such biological constructions 
may be described using the method proposed by Leyton… possibly a venue to explore further.  

 
7.3 The functional component Kf 
Finally, the part of Kf complexity which we have called “functional” corresponds to the 
relations (metabolic, nervous, etc.) which are established between cells and organs in order to 
ensure the organism’s physiology, the integrations and regulations between levels of 
organization, motor, cognitive and behavioral controls. It is obviously quite difficult to 
evaluate this contribution but, by proposing some specific formalizations, we nevertheless 
present a few ideas which may contribute to mathematize the discussion, thus to clarify its 
terms on rigorous conceptual grounds. 

   To do so, we will consider that this set of relations and networks can be represented by 
means of graphs where, for example in the case of the nervous system, the nodes correspond 
to neurons and the edges to synapses. Kf will then correspond to the (logarithm of the) number 
of such graphs. So if we designate the number of neurons (approximately 1011 for the human 
brain) as m and designate the number of synapses as km (k being between 103 and 104), the 
theory of Erdös-Renyi graphs shows that there are G graphs such as: 

 

G =  =  
 

with the  symbols corresponding to the combination of a objects taken b to b; and we 
will therefore postulate: 

 
Kf  kBLogG 

 
If m is very large in comparison to 1, Stirling’s successive approximations then give us: 
 

Kf  kBkm(Logm) 
 

And for each neuron, we get: Kf/m  kBkLogm 
   One may notice that in this elementary model the complexity per neuron increases 

(logarithmically) with the number of neurons once such a number is sufficiently high. This 
situation may be distinguished from that encountered with the combinatorial complexity per 
cell which remains – roughly – independent from the number of cells. This effect is of course 
associated to the global effects that are induced by the functional relations between 
elements15. 

   A more general approach may also be proposed: let  <k>  be the average number of 
edges per node and N the number of nodes; the total number of relations will therefore be 
<k>N and the number of associated permutations is  (<k>N)!.  For a large N the 
corresponding  Kf  would therefore be approximately  kB<k>NlogN  and, per node (per 

                                                   
15 This case is the simplest because we have taken into account only combinations of the sets of pairs of 
interacting neurons. If we had considered the totality (or even an asymptotic significant part of this totality) of 
the possible sub-sets, we would have obtained  Kf  kBkm2Log2  and a complexity per neuron proportional to  
m. 
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neuron, for example, or per support within a metabolic network) we get  Kf/N  kB<k>LogN,  
with the same qualitative remarks as before regarding the dependency in terms of the average 
number of edges per node and of the number of nodes. The advantage of this point of view 
enables to integrate the case of networks which are independent of scale, of which, in general, 
the probability of edges per node evolves in k-p.  By taking the normalization factors into 
account, we get  <k> = ζ(p-1)/ζ(p)  where ζ represents the Riemann function. A number of 
studies pertaining to variegated networks show that p is close to 2 (for metabolic networks for 
example, we have p  2.2). For the nervous system, the fact that the average number of 
synapses is of the order of the thousands, even of the tens of thousands, indicates that in this 
case p is very close to 2 (up to 10-3 or even 10-4). 

 
7.4  Conclusion 
We have attempted to define, to analyze and to propose a way for measuring the quantity 
what we can designate as the complexity K of a living organism. To do so, we have 
distinguished between three possible components: a combinatorial component where the 
important factor is the number of differentiated cellular lineages, a morphological component 
which takes into account the more or less elaborate form of structures and their connexities 
and, third, a functional component relative to the relations established by the networks formed 
by the organism’s cells or parts. Depending on the given situation, the dominant terms may 
vary: for example, in less evolved organisms, the combinatorial aspect, based on the number 
of cells concerned, may play a major role. Likewise, relatively to the morphological 
component, the existence of more or less significant symmetries, of more or less numerous 
connex components, of more or less singular structures (fractal or not) plays an essential role 
which, in certain cases this may be the main component of (may mathematically dominate) 
the complexity of the organism. Consider, for example, the variety of organisms involved in 
the “explosion” of the Burgess fauna. Conversely, in highly evolved organisms, for example 
those endowed with a sizable and developed nervous system, the relational/functional aspect, 
logarithmically dependent on the number of concerned cells, seems to clearly dominate. 

   These different ways in which a same overall complexity K can occur in living 
phenomena illustrates in our view the genericity of the biological trajectories in contrast with 
the singular geodesics of physics, inasmuch as this same complexity is, in our view, an 
essential component of the conceptual space specific to any analysis of life phenomena. 

 
 

 
8. More on negative entropy in physics and anti-entropy in biology. Concluding remark. 

 
All irreversible physical processes produce entropy: positive, growing entropy. In some cases 
though, in particular in the cases of phase transitions from disorder to order, one can witness a 
decrease of this quantity. The point is that entropy, in thermodynamics, corresponds to a 
degradation of energy and a suitable energy input, in some cases, or a change of the system as 
a whole (phase transitions) may compensate this degradation. It is then possible, within 
thermodynamics, to develop an analytical framework for both increasing and decreasing 
entropy without having recourse to anything else than its general principles (usually in the 
number of three: the conservation of energy, the non decrease of entropy in isolated systems, 
the absence of any movement and therefore of any form of energy16, at the absolute zero of 

                                                   
16 At least from a non-quantum standpoint. 
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temperature).  Unification with classical dynamics was made possible by means of statistical 
physics, by the analysis, at the infinite limit, of particle trajectories, hence of geodesics, as 
optimal trajectories for action (energy × time).  

When used in biology, the concept of negative entropy has been also considered as 
contrasting, by a negative sign, the growth of (thermodynamic) entropy. So, viewed as a non-
isolated system, an organism may absorb solar radiation and decrease entropy (typically, in 
photosynthesis, [Brittin, Gamow, 1961; Jennings et al., 2007]) or it may absorb energy from 
high temperature thermal sources, in deep sea far from solar radiation ([Lopez-Garcia P., 
2003]) and contrasts by this entropy decrease, in particular by building organic molecules. 
These are very interesting approaches, but we find them mathematically insufficient for 
describing living organization: they focus on the molecular level, a most relevant one, yet 
exactly the one that Schrödinger (and us) propose to put temporarily aside, in order to develop 
a systemic approach to live phenomena17. Reduction, as in thermodynamics, or unification as 
in relativistic vs. quantum fields is a further, very relevant and difficult issue. 

And now a crucial point: energy and its up- and down-grading are the key observables in 
these molecular analyses. As a matter of fact, the prevailing perspective regarding the inert, in 
thermodynamics just as in any physical theory, focuses on energy and derived or correlated 
notions (“least action principles”, typically). Also entropy, as recalled above, can be 
expressed in terms of the degradation of energy (and/or of the dispersion of trajectories), thus, 
in some cases, it may be compensated by a suitable absorption of energy. The many very 
relevant analysis on entropy decrease in building processes of organic molecules belong to 
these approaches, as we said, and focus on energy exchanges (see also [Kier, 1980], [Roy et 
al., 2003] for more on the role of decreasing entropy in molecular processes).  

In our opinion, autonomous mathematical investigations, concerning the “multilevel 
entangled structure” of living organisms, also deserve to be carried on, in the more complex 
sense of different but interacting levels of organization, even in a cell, beyond the molecular 
level. In particular, cellular differentiation leads to an organism where the “structure of 
correlation” (as defined in [Bailly, Longo, 2008]) is based on integration and regulation 
between levels. This proposes a relatively new and crucial observable, from the perspective of 
the “large-scale behavior of a living organism”. Our aim has been to propose a tentative 
quantification of this observable, which is compatible with, but adds up to the ones used in 
physical theories. As we stressed several times, it is related to energy via a balance equation 
derived from metabolism and an extension of the notion of Gibbs free energy G, but our focus 
is on the  K = -S-  component in equation (2), and on entropy production,  Tσ,  equation (3).  
As we mentioned in sect. 2, the possibility of writing these equations, in terms of G, 
motivated our tentative correlation of biological organization (or complexity) to a notion of 
anti-entropy. 

Of course, there exists at least an area of physics where the concept of “organization” 
massively steps in. This is the theory of “critical phase transitions” ([Binney et al., 1992], 
[Kauffman, 1993], [Jensen, 1998] and many others). In sect 1.2 and 2, we already hinted to 

                                                   
17 As quoted in sect. 1.1: “…entropy principle on the large-scale behavior of a living organism - forgetting at the 
moment all that is known about chromosomes…”. 
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the relevance of and the correlations to these analyses, which we “extended” in [Bailly, 
Longo, 2008].  

Many also tried to analyze biological organization in terms of (Shannon’s) information: 
since entropy increase may characterize loss of information, its negation should provide (an 
increase of) information. Besides its relevance in transmission theory, this approach has 
inspired new analyses also as for negative entropy in quantum systems (see, among others, 
[Cerf, Adami, 1997]). Yet, both classical and quantum information basically refer to classical 
or quantum bits, as the discrete mathematical frames are at the core of information and 
computation theories. In contrast to this, we tried to deal with equations (balance and 
diffusion, typically) that are better understood in (differentiable) continua and where 
Shannon’s theory and its quantum variants hardly apply. Moreover, our guiding reference to 
anti-entropy as a component of a Gibbs free energy, following but beyond Schrödinger, also 
departs from the understanding of our notion in terms of (Shannon’s) information. 

The best, yet very informal, analogy we can propose within physics is not with the many 
current uses of negative entropy, as far as we can see, but it concerns the notion of anti-
matter. Anti-matter has the same physical dimension of “matter”, but it is not mathematically 
correlated to a decrease of energy in matter. It is one of the possible solutions of Dirac’s 
equation ([Schiff, 1955]) and the lowering of energy, towards equilibrium or far from 
equilibrium stationarity, for example, does not lead nor is related to “anti-matter”. Thus, anti-
matter has the same dimension and the opposite sign w.r. to energy in correspondence to the 
opposite sign of charge of matter, but it is a different concept, since it refers to different 
observables: typically, the positron (anti-electron) yields negative energy (positive charge), 
the anti-proton yields negative energy (negative charge) but they are not just a different state 
of the electron or the proton, but different quanta. When anti-matter encounters matter, the 
annihilating result of quanta produces a large amount of energy, under the form of gamma-
rays, not zero nor least energy18. The prevailing of matter over anti-matter has been analyzed 
as a breaking of the CP symmetry, in reference to the TCP symmetry, [Sakharov, 1982]. 

Similarly, for us, anti-entropy has the same (physical) dimension as entropy, with the 
opposite sign, yet it is a different concept, as it provides a different observable: in our 
approach, anti-entropy is correlated to the formation of multilevel, integrated and regulated 
organization, and not only to the appearing of order corresponding to a lowering of physical 
entropy, a relevant and largely studied issue, which is already present at the molecular level 
and in critical transitions in physics. Moreover, this conceptual analogy of our notion of anti-
entropy to physical anti-matter justifies our computations in sect. 7, sect. 7.1 in particular. As 
for anti-matter, its values of energy and charge are computed in the “same” way as those for 
matter, but they have opposite value and provide a different observable (the anti-particles). 
Similarly we computed  S-  by  -kBLogZ  and thus,  K,  by the “same” computations as  
physical S+. Yet, our Z and the objects are very different: the discernable states are the cells 
and their differentiated lineages (whose ratio gives the measurable value, see eq. (14), sect. 
7.1), the complexity of their shapes, their connexity, etc. and the functional structures of the 
relevant networks (enzymatic, neuronal, etc.). 

                                                   
18 Let’s recall that Dirac’s equation also engenders Pauli-matrices representing the spin of the particles and, from 
this point of view, it organizes some key properties of the matter. 
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By these tools, we insist, with many other authors including Schrödinger, but along our 
proper lines, on the necessity to develop, in parallel to the richness of the analyses of 
molecular biology, systemic frameworks specific to the global activity of organisms. These 
could suggest, even for phenomena that occur within the cell, a structure of determination that 
is more adequate for the physical singularity of life phenomena (see [Bailly, Longo, 2006] for 
an analysis of the various forms of physical determination and an outline of their relationship 
to life sciences).  

In conclusion, it has not been a question here of discussing the current stability of the cell 
as such, or even that of the organism, as meaningful coherence structures within which to set 
the causal analyses themselves, if possible, of proteins’ cascades. Our project is one of the 
many theoretical efforts proposing the systemic perspective of which the notion of “extended 
criticality” should also be part (see [Bailly, Longo, 2008]). In this paper, we focused on a 
simple mathematical description of a new observable, as “determined by” and “applied in” a 
few inequalities and equations.  

Observe finally that anti-entropy is “just” a tool for our approach, as we aim at 
quantifying  K,  epistemic complexity, and mathematically work on it. We suggested that it 
may defined as  K = -S-, so that we could work on it as a component of the equational 
definition of metabolism, in terms of Gibbs free energy. 

It should be clear that the method is largely derived from the practice of physical 
theoretizing, yet, we (strictly) extended current physical theories, thermodynamics, in 
particular, by new principles which we consider proper (only) to the phenomenality of life. 

 
 
 
 

Appendix 1:  Some dimensional analyses 
 
Let’s recall that the application of the Ô operator leads to the equation of the generic g density 
function’s general form: 
 
                            ∂g/∂t = Dg∂2g/∂κ2 + (Tσ0g/ρg)g = Dg∂2g/∂κ2 + αgg 
 
   The dimensional analysis of the various intervening coefficients may present some interest and 
reveal itself to be enlightening. The dimensions will be denoted in brackets [...], and we will 
denote, as usual, mass as [M], length as [L], time as [T] (not to be mistaken for temperature which 
is usually written as [°K]), and, by convention, [C≡ML2T-2(°K-)-1]  for complexity. We will then 
have: 
 
[σ]   =  [ML2T-3(°K)-1]        (power per Kelvin – and per mole -) 
 
[ρ]  =  [ML2T-2]       (energy) 
 
[(°K) × σ0]  =  [ML2T-3]      (power) 
 
[α]  =  [(°K) × σ0 / ρ ]  =  [T-1]       (reciprocal time value = frequency) 
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[D]  =  [M2L4T-5(°K)-2 ≡ C2T-1]      (square of a complexity divided by time). 
Let’s recall that in the case of thermal or matter diffusion, the diffusion coefficient has a 
magnitude which is the square of a length divided by time ([L2T-1]; here, it is therefore the 
epistemic complexity which serves as length, that is, of space. This is in accordance with or main 
equation (5) and its derivation “a la Schrödinger”. 
   Finally, we have introduced, over the course of these definitions, within the framework of the 
evaluation of the speed of entropy production, the coefficient ζb ; given the way in which it 
intervenes (see relation (7) for example), its dimensionality is less “classical” 
 
[ζ]   =   [M-1L2T-3] 
 
   The other magnitudes which appear in the text are endowed with their usual dimensions (direct: 
time, mass, numbers, or derived: entropies, energies, densities over the epistemic complexity). 
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Appendix 2:  The case of Caenorhabditis elegans.  
 

   The interest of examining the case of Caenorhabditis elegans in terms of combinatorial 
complexity stems from the fact that, as we have already evoked, we have a thorough 
knowledge of this organism’s development, cell by cell and ensuing lineage by lineage (see 
[Ehrenstein, Schierenberg, 1980]). The results we have obtained using the empirical data 
present some interest and provoke a few questions which may prove to be relevant to other 
cases. 
   It is an issue of examining the behavior of Kc over time, which is defined by relation (14) 
(in this case, there are not always enough cells in each lineage in order to apply approximation 
(15)). Table 1 presents these results. It is striking to observe that Kc increases very quickly 
from 0 (a single cell) to 1 and that it stabilizes around this value over the course of its 
development from the moment where all cellular lineages are represented, as if it was 
effectively the number of active cellular lineages which would essentially set Kc, 
independently of their number of cells and hence of the size of the organism.  
 
Time t 
(mn) 

Total 
number 
N 

AB 
lineage  

MST 
lineage  

C 
lineage 

E 
lineage 

D 
lineage 

P 
lineage 

Kc/kB 

70 6 4 1    1 0.57 
100 24 16 2 2 2 1 1 0.92 
130 31 16 4 4 4 2 1 1.2 
150 81 64 8 4 2 2 1 0.71 
170 102 64 16 8 8 4 2 1.10 
250 182 128 16 8 8 4 2 0.97 
Pre-
lima 
bean 

434 256 64 64 32 16 2 1.19 

 



 30 

Bibliography (Longo’s articles can be downloaded from: http://www.di.ens.fr/users/longo/) 
 
Andresen B., Shiner J.S., Uelinger D.E., “Allometric scaling and maximum efficiency in physiological 

eigen time”, PNAS, 99, n°9, p.5822, 2002. 
Bailly F., Gaill, F., Mosseri R., “Orgons and Biolons in Theoretical Biology: Phenomenological 

Analysis and Quantum Analogies”, Acta Biotheoretica, Vol.41, p.3, 1993. 
Bailly F., Longo G. “Objective and Epistemic Complexity in Biology”.  Invited lecture, Proceedings 

of the International Conference on Theoretical Neurobiology, (N. D. Singh, ed.), pp. 62 – 79, 
National Brain Research Centre, New Delhi, INDIA , 2003. 

Bailly F., Longo G., Mathématiques et sciences de la nature. La singularité physique du vivant, 
Hermann, Paris, 2006 (Introduction in English, downloadable; ongoing translation). 

Bailly F., Longo G. “Extended Critical Situations”,  in J. of Biological Systems, Vol. 16, No. 2, pp. 
309-336, June 2008. 

Binney J., Dowrick N.J., Fisher A.J., Newman M.E.J.. The Theory of Critical Phenomena: An 
Introduction to the Renormalization Group. Oxford U. P., 1992. 

Brett D., Pospisil H., Valcárcel J., Reich L., Bork P. “Alternative splicing and genome complexity” 
Nature Genetics 30, 2001. 

Brittin W., Gamow G., “Negative Entropy and Photosynthesis”, PNAS, Vol. 47, No. 5, pp. 724-727, 
1961. 

Brown J.H., Gupta, V.K. , Li B-L. , Milne B.T., Restrepo C. West G.B., “The fractal nature of nature: 
power laws, ecological complexity and biodiversity”, Phil. Trans. R. Soc. Lond., B, 357, p.619, 
2002. 

Chapouthier G., Matras J.-J., “La Néguentropie : un artefact ?”, Fundamenta Scientiæ, Tome 2, 141-
151, 1984. 

Cerf N.-J., Adami A., “Negative  entropy and information in quantum systems” Physical Review 
Letters:  v.79 (26), 1997. 

Demetrius L., “Caloric restriction, metabolic rate and entropy”. J Gerontol Biol Sci 59: 902–915, 
2004. 

Denne S.C., Kalhan S.C., “Leucine metabolism in human newborns”, Am. J. Physiol. Endocrinol. 
Metab. , 253, E608, 1987. 

Edelmann G., Tononi G., A Universe of Consciousness, Basic Book, 2000. 
von Ehrenstein G., Schierenberg E., Cell lineages and development of Caenorhabditis elegans and 

other nematodes, in : Nematodes and biological models, Vol.1, Acad. Press 1980. 
Fox Keller E., The century of the gene, Harvard U. P., 2000. 
Gayon J., “History of the concept of allometry”,  American Zoologist, 40, p.748, 2000 
Gillooly J.F., Brown J.H., West G.B., Savage V.M., Charnov E.L., “Effects of size and 

temperature on metabolic rate”, Science, 293, p.2248, 2001. 
Gould S. J., Wonderful Life, Norton & Co., 1989. 
Jennings R.-C., Belgio E, Casazza AP, Garlaschi FM, Zucchelli G.  Abstract “Entropy consumption in 

primary photosynthesis”, Biochim Biophys Acta 1767(10):1194-7; discussion 1198-9. Epub 2007 
PMID: 17900522 [PubMed - indexed for MEDLINE], 2007. 

Jensen H. J., Self-Organized Criticality, Emergent Complex Behavior in Physical and Biological 
Systems. Cambridge lectures in Physics, 1998. 

Kauffman S.A., Origins of Order: Self Organization and Selection in Evolution, Oxford U. P., 
1993. 

Kier L.-B. “Use of molecular negentropy to encode structure governing biological activity”. J Pharm 
Sci. 69(7):807-10, 1980. 

Kurz H.,  Sandau K., Science, 281, p.5378, 1998. 
Lecointre G., Le Guyader H., Classification phylogénétique du vivant, Paris, Belin 2001. 
Longo G., Tendero P.-E., “The differential method and the causal incompleteness of Programming 

Theory in Molecular Biology”. In J. of Foundation of Sciences , n. 12, pp. 337-366, 2007. 
Leyton M.  A Generative Theory of Shape, Springer, 2004. 



 31 

Lopez-Garcia P, Philippe H, Gail F, Moreira D.  “Autochthonous eukaryotic diversity in hydrothermal 
sediment and experimental microcolonizers at the Mid-Atlantic Ridge”, Proc Natl Acad Sci USA. 
Jan 21;100(2):697-702, 2003. 

May, R. M. “Simple mathematical models with very complicated dynamics”. Nature, 261: 459-467, 
1976. 

Mitchell N.J., Seymour R.S., Physiological and Biochemical Zoology, 73 (6), p.829, 2000. 
Olshansky S. J., Rattan S. I.S. “At the heart of aging: is it metabolic rate or stability?” Biogerontology 

6: 291–295, 2005. 
Nicolis G., "Dissipative systems", Rev. Prog. Phys., IL, p. 873, 1986. 
Nicolis G., Prigogine I., Self –Organization in Nonequilibrium Systems, J. Willey, 1977. 
Pauling L. “Schrödinger contribution to Chemistry and Biology”, in Schrödinger: Centenary 

Celebration of a Polymath (Kilmister ed.) Cambridge U. P.,  1987. 
Perutz M.F. “E. Schrödinger’s What is Life ? and molecular biology”, in Schrödinger: Centenary 

Celebration of a Polymath (Kilmister ed.) Cambridge U. P.,  1987. 
Peters  R.H. , The ecological implications of body size, C.U.P. 1983. 
Pichot A., Histoire de la notion de gène, Flammarion, Paris, 1999. 
Roy K, Saha A. Abstract “Comparative QSPR studies with molecular connectivity, molecular 

negentropy and TAU indices, Part I.” J Mol Model. 9(4):259-70. Epub 2003 Jun 20. PMID: 
12827454 [PubMed - indexed for MEDLINE], 2003. 

Sakharov A.D., Scientific Works, Dekker, 1982. 
Schiff L. I. Quantum Mechanics, MacGraw Hill, 1955. 
Schmidt-Nielsen, Scaling, C.U.P. 1984. 
Schrödinger E., What Is Life ? 1944. 
Sprott, J. C. Chaos and Time-Series Analysis. Oxford University Press, 2003. 
Weibel E.R. , “Fractal geometry: a design principle for living organisms”, Am. J. Physiol, 261, 1991. 
West G.B., Brown J.H., Enquist B.J., “A general model for the origin of allometric scaling laws in 

biology”, Science, 276, p.122,  1997. 
Wieser W. , “A distinction must be made between the ontogeny and the phylogeny of metabolism in 

order to understand the mass exponent of metabolism”,  Resp. Physiol, 55, p.1, 1984. 
Zelter M., “L'homme et son environnement. Aspects bioénergétiques”, available at : 

www.chups.jussieu.fr/polys/physio/BioenergP1-2004.html . 
 

View publication stats

https://www.researchgate.net/publication/247697945

